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LETTER TO THE EDITOR 

Hot-electron distribution in the quantum well of a 
resonant tunnelling diode 

Yuming Hu and Shawn Stapleton 
School of Engineering Science, Simon Fraser University, Burnaby, BC, Canada V5A IS6 

Received l2July 1991 

Abstract. The inmherent electrons in the quantum well play an important role in resonant 
tunnellingdiodes. The hot-electron distribution. characterized by the electron temperature 
T, and the effective Fermi energy & I is proposed to describe the non-equilibrium distribution 
of the incoherent electrons in the quantum well. These two parameters, T. and fie, can be 
uniquely determined by the energy conservation law and particle conservation law. We have 
also calculated the current density tunnelling through the diode. Our results demonstrate 
that the current peak-to-valley ratio degrades as scattering in the quantum well increases, 
which isconsistent with the current experimental results. 

Since Tsu and Esaki first proposed the resonant tunnelling diode (RTD) in 1973 [l], 
experimental investigations into RTDS have made significant advances due to the 
improvements in microfabrication technology [2-51. However, theoretical inves- 
tigations into RTDs have not kept the same pace and many controversial questions still 
need to beclarified [&17]. In thisletter, we willonlyfocuson thedistributionofelectrons 
in the quantum well, which, to our best knowledge, has not been seriously investigated. 
This distribution plays a crucial role in RTDS. First, the electron distribution in the well 
will directly affect the I-Vcurves of RTDS. Second, electron charges in the quantum well 
will modify the parasitic capacitance of the RTD. This parasitic capacitance holds an 
important role in the determination of the maximum obtainable power and oscillating 
frequency when RTDS are used as microwave oscillators [3]. Third, the electron charges 
in the quantum well will generate an electric field, which will modify the barrier profile 
of RTDS. The modified barrier profile will affect total charges in the well, too. This 
feedback mechanism is believed to be responsible for the hysteresis and shoulder-like 
behaviour observed in the I-Vcurves of RTDS [9,15-161. 

We will start with the dampled resonant tunnelling model, which was first introduced 
by Stone and Lee [lo] in disorder-localized one-dimensional systems and, later on, 
developed for the RTD [ll-121. In this model, the electron waves will be treated exactly 
the same as the light waves. The contacts with the RTD will be modelled by electron 
reservoirswhich emit thermal equilibrium electronsand absorbcompletely any incoming 
electrons. In order to model the effects of scattering due to the phonons, defects, etc., 
a damping constant, a, is introduced for the electron waves in the quantum well. It 
is reasonable to assume that electrons lose phase coherence completely after being 
scattered, so we may partition the total electrons tunnelling through the RTD into two 
parts: 
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(1) The first part is the coherent tunnelling electrons which do not experience any 
scattering, except by the barriers during tunnelling. For these electrons, the momenta 
parallel to  the walls are conserved and motion perpendicular to the walls are described 
by quantum mechanics. Since the distribution of the coherent electrons in the well can 
be relatively easily derived from the results in [ 131, we will not elaborate on it here. 

(2) The second part is the incoherent electrons which are scattered by the phonons, 
impurities, defects, etc. For these electrons, the momenta parallel to the walls are not 
conserved during tunnelling because they can be scattered into any direction in 3- 
dimensional space. The incoherent electrons will redistribute themselves in the well and 
subsequently escape from the well by tunnelling through the barriers incoherently. In 
order to calculate the total number of incoherent electrons in the well, it is required to 
determine the non-equilibrium distribution of the incoherent electrons. Unfortunately, 
the derivation of this distribution from a kinetic equatiori is an extremely non-trivial 
problem. This is because many conceptual problems regarding open systems are not 
fully understood yet [17]. However, intuitively, we may propose the hot-electron dis- 
tribution to model the non-equilibrium distribution of the incoherent electrons in the 
well, i.e. 

where T, is the electron temperature and pe is the effective Fermi energy. The hot- 
electron distribution has been used to describe the electron transport in the device of 
a metal-insulator-metal-insulator-metal structure. which has exactly the same band 
structure as that of the RTD [la]. The physical arguments for this assumption are as 
follows. When an electron enters the quantum well from the emitter, it will gain kinetic 
energy (later on the term ‘kinetic energy’ will be shortened to just ‘energy’) and momen- 
tum from the external electric field. The electron will transfer, at most, kBO energy to 
the lattice (where 0 is the Debye temperature of the lattice) when it  is scattered by the 
phonons, and will not lose energy when it is scattered by the impurities and defects. 
The momentum of the electron, however, can be randomized immediately by all the 
scattering mechanisms, no matter whether i t  is scattered by phonons or impurities. This 
means that it  takes much longer time for the electron to lose its energy than it takes to 
lose its momentum gained in the electric field. Since the energy relaxation is a slow 
process s) while the momentum relaxation is a faster process (lO-“s) [19], the 
energy gained in the field cannot be dissipated quickly enough into the lattice. This 
energy will be randomized into the thermal energy of the electron itself through carrier- 
to-carrier interactions, causing the electron temperature to be higher than the lattice. 
The distribution given by (1) has not been completely specified unless the electron 
temperature, Tt, and the effective Fermi energy, pc,  are known. These two parameters 
may be determined by using the energy conservation equation and the particle con- 
servation equation. Energy and particle conservations are necessary conditions for any 
distribution used to describe the incoherent electrons in the well. 

Our model of the RTD is shown in figure 1, where the trapezoidal barrier has been 
replaced by a square barrier with the same area for simplicity. This, we believe, will not 
yield any qualitative difference. The x direction is chosen to be perpendicular to the 
walls of the RTD (see figure 1). We shall denote the transmission coefficients, t ,  and 
reflection coefficients, r ,  for the barriers by til, rll,  t,,, r,,, t l r r  r l r ,  t2,and r,,. The subscripts 
I(2) designate the left (right) barrier and subscriptsf(r) designate a wave coming in from 
the left (right) side. The energies of the electrons in regions 1 , 2 , 3  will be denoted by 
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Figure 1. A simplified structure for a double barrier with an applied field, where the 
trapezoidal barriers have been replaced by square barriers with the same area. 

E , ,  E,, E,, and the magnitudes of the momentum by k, ,  k,, k,. We also use kix and k,, 
( j  = 1,2,3) to represent the momentum components parallel and perpendicular to the 
x direction in region j ,  respectively. The corresponding velocity in the x direction in 
region jisdenoted by ujx = i%k,=/m. Following a similar procedure as that for the damped 
Fabry-Perot resonator [ll-131, wecanobtaintheglobal transmission,tG, and reflection, 
rG, coefficients for electrons from regions 1 to 3, 

f~ = fl1hI exp(jk,a, - ~ / 2 ) / [ 1  - v - 2  e x p ( i Z w 2  - w)l (20) 

(2b) rG = 

where a, is the width of the quantum well and CY is the damping constant which combines 
theeffects of all the scattering mechanisms. The introduction of the damping constant, 
a, causes a breakdown of unitarity: the incoming electron current will be larger than 
the sum of the transmitted current and the reflected current. The missing current, 
mathematically described by ulr (1 - JrGJz - IfGlz U ~ ~ / U , ~ ) ,  can be interpreted asa  trans- 
port of the incoherent electrons into the well, which leads to the accumulation of the 
incoherent electrons in the well. When an electron enters the quantum well from the 
emitter, the electron will gain an energy 4eVfrom the electric field (e is the elementary 
charge of an electron and Vis  the applied voltage), so the electron will carry a total 
energy E ,  + k V  to the well. The total energy flux entering the well from region 1 is the 
integration of the energy carried by each electron times the incoherent electron flux 
density entering the well, which is 

-+ rlIrdlr  exp(i&az - &/[l - ~ I A I  exp(i%a, - a 4 1  

Similarly, the incoming energy flux from region 3 can be written as 
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wheref(k,) (j = 1,3) is the Fermi-Diracdistribution, ku = s V / t i ,  and tl; and r& are 
the transmission and reflection coefficients from regions 3 to 1, respectively. The first 
part on the right side of (36) represents the contribution from the electrons whose 
energy, in the x direction, is larger than k V  but less than eV. These electrons are able 
totunnel throughtheright barrierbutnotthrough theleftbarrier, thustheyallcontribute 
to the energy flux in the quantum well. The second part represents the contribution from 
the electrons whose energy in the x direction is larger than el.'. These electrons can 
tunnel through the double-barrier structure, and thusonly the 'missing' part contributes 
to the flux. The energy tlux going out from the quantum well to regions 1 and 3 can be 
written as, respectively, 

E 2 "  
J L t 2  =--I dk,/ d h ,  f ( k , , T , , ~ , ) & u ~  lh12. (46) ( 2 4  0 ..I 

The energies of the incoherent electrons in the well can also be dissipated into the lattice 
by the electron-phonon interactions. The dissipation rate may be modelled by the 
relaxation-time approximation [E(T,) - €(T)]/T~, where 5, is the energy relaxation 
time [19]. E(TJ and E(T)  are the total energy of the incoherent electrons per unit 
volume in the well at the electron temperature T, and the lattice temperature T ,  
respectively. In steady state, the energy conservation law requires that the energy flux 
entering the well is equal to the energy flux going out of the well plus the energy flux 
dissipated into the lattice, i.e. 

+ Ji'h = J & ~ I  + J &  + a,LE(Tc) - E(73I/~s~ (5) 
As z,+ 0, T, must equal T. In thiscase. the hot-electron distribution (1) reduces to the 
Fermi-Dirac distribution. Similarly, the particle conservation law can be written as 

JLi + J L 2  = JLI + J L  (6) 

where J:nl and J:,2 represent the incoherent electron current densities entering the well 
from regions 1 and 3? while Jbrl and J &  represent thecurrent densities going out from 
the quantum well to regions 1 and 3, respectively. The formulas for calculating these 
currents can be derived from (3) and (4) by replacing the energy carried by an electron 
with the charge carried by the electron. We would like to emphasize that we do not need 
to write down the energy and particle conservation equations for thecoherent electrons, 
since they are guaranteed by the quantum mechanics. Equations (5) and (6) are implicit 
equations of T, and ,ut, which can only be solved numerically. 

The parameters in this calculation were chosen as follows. The widthsof the barriers 
andwellweretakenasa, = u3 = 17/%anda2= 45 A.TheFermienergy,,u,attheemitter 
and collector was chosen as 0.05 eV and the room temperature was set to 300 K. The 
barrier heights are equal to 1 eV. The effective mass in the barrier was taken to be O.lmu 
(mu is the free electron mass), while the effective mass in the other regions is 0.067m0. 
The energy relaxation time was chosen as 5 X lO-"s and the damping constant, a, is 
2 X lo6 cm-I. The secant method was used to solve (5) and (6). We found that this 
method converges for any applied voltages and a unique solution of T, and p, can be 
obtained from (5) and (6). The results are displayed in figure 2. We can see from figure 
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2 that the electron temperature increases as the applied voltage increases. This reflects 
the fact that the higher the voltage is, the more energy the electron will gain when it 
enters thequantum well. It is interesting to notice that when the appliedvoltage is high, 
say above 0.6 V, the effective Fermi surface is well below the conduction band. Then 
the distribution given by (1) reduces to the Boltzmann distribution. There is a simple 
physical explanation for this phenomenon. When theappliedvoltage is high, the average 
energy of electrons in the well will be large. This means that the average occupancy of 
each state will be low and the Pauli exclusion principle becomes insignificant. Since the 
electrons will not lose energy quickly enough to the lattice, we may approximately think 
of the total kinetic energy of the electrons in the well as being conserved. Thus, the 
electrons will adjust their energy and momentum distributions through the electron- 
electron interaction. This is exactly the same situation as that of the ideal gas and the 
resultant distribution must be Boltzmann. 

We have also calculated the total current density tunnelling through the diode, which 
is the summation of the coherent current density, Jmh, and the incoherent current 
density, Jinmh. The coherent current density can be shown to be given by [ZO] 

f(E,)  = (mk,T/2x2h2)ln(l + ep@-Etx)) E,, = h2k2,/2m (76) 

and the incoherent current density is given by 

Ji-h = J&o - J & 2 .  (8) 
The parameters used in this calculation were exactly the same as that in figure 2 ,  except 
twodampingconstants, 106cm-' and2 X lo6 cm-'wereused. Largerdampingconstant 
represent more scattering, which could come from more defects, more impurities, or 
higher lattice temperature. Our results, as displayed in figure 3, clearly demonstrate that 
the current peak to valley ratio degrades as the damping constant increases. This is 
qualitatively consistent with the current experimental results: the current peak-to-valley 
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ratio decreases as the lattice temperature increases [2] or as the density of defects 
increases. The latter has been analysed by Mao er a/ using fast-neutron irradiation [21]. 
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